

DC2 Series

Servo Drive Specification
TYPE A - GENERAL PURPOSE PULSE / ANALOG / RS232
TYPE B - MODBUS
TYPE C – CAN

Manual Contents

 2

Contents
■ Safety Notice ■ 2
■ Notations Used ■ 2
■ Standards Compliance ■ 2

Product Manual Preface 3
Manual Contents 4

A.1 Introduction 5
A.2 Name Plate 5
A.3 Servo Drive Model Number 6

1 GENERAL SPECIFICATION 7
1.1 Drive Overall Specification 7
1.2 Control Block Diagram 8
1.3 Encoder Specification 8

2 CONNECTIONS AND WIRING 9
2.1 DC2 Servo Drive Body Layout 9
2.2 Connector and Signal Specification 10
2.3 JP3 Main I/O Details 12
2.4 JP3 I/O Connection Circuit 16
2.5 Main Power Supply Requirements 20

3 START UP 22
3.1 Mounting and Installation 22
3.2 Timing Chart 23
3.3 DC2DRV Software Communication 25
3.3 DC2DRV Software Communication 26

4 OPERATION 27
4.1 Position Servo Mode 27
4.2 Speed Servo Mode 31
4.3 Torque Servo Mode 33
4.4 RS232 Command Input Mode 34
4.5 Absolute Zero Position Index Output (ZRI) 34
4.6 Holding brake control BKO output 35

5 PARAMETERS AND TUNING 36
5.1 Parameters Outline 36
5.2 Servo Drive Gain Tuning 38

6 MAINTENANCE 40
6.1 Alarm Specifications 40
6.2 - Drive Maintenance 41

7 RS232 Communication Protocol 42
7.1 Interface and Format 43
7.2 Packet Definition 45
7.3 Drive Configuration and Status Register 49
7.4 Common Function Details 50
7.5 DC2amic Target Position Update (DTPU) 52
7.6 Packet Structure Examples 54
7.7 Application Examples 55
7.8 RS485 Serial Network 59
7.9 A Appendix : C++ Code for Serial Communication Protocol 60

8 Modbus RTU (RS485) Communication 67
9 CAN Communication 68
APPENDIX A - SERVO DRIVE DIMENSIONS 69
APPENDIX B - Operation Examples 70

A.1 Introduction

 3
DC2MS-14G-0920A18

This manual documents all features and specifications for the DC2 series AC Servo Drive Type A -
General Purpose Pulse/Analog. The servo drive features standard pulse train and analog command input
modes compatible with universal motion controllers, PLC’s or CNC controllers. Control modes include
position, speed or torque servo mode with standard signal connections and interfacing for seamless
integration into any system. A high resolution 16-bit (65,536pulse/rev) encoder combined with outstanding
10ms instantaneous position response optimizes performance in high-demand applications.

Gain adjustment is simplified with 3 parameter tuning for fast and easy adjustments while maintaining
critical application and response flexibility. All testing and tuning is done through an RS232 or USB
interface with a host PC running DC2DRV GUI software for fast and easy set up. Drive status is internally
monitored by 22 parameters for consistent and reliable performance.

Standard servo motor and encoder/motor power cable pair options available. Measuring only 32mm [W] x
85mm [H] x 75mm [D], the DC2 AC Servo drive can power up to 0.75kW (7.1Nm) capacity. The perfect
servo drive for any small to medium capacity application.

A.2 Name Plate

Note the name plate is region specific and may vary between each region model.

Model Number
Input / Output Specifications
Protection Country of Origin
Lot / Serial Number Hardware / Software Version

A.3 Servo Drive Model Number

 4
DC2MS-14G-0920A18

 5
DC2MS-14G-0920A18

1 GENERAL SPECIFICATION

1.1 Drive Overall Specification

 Data Specification

Input

Rated Voltage 60VDC ± 10%
Permissible Input Voltage 24VDC ~ 75VDC
Rated Current 16A

Output

Rated Voltage Peak. +75VAC
Between any two motor phase

Rated Current

[L] Capacity Model: Peak. 20A
[1] Capacity Model: Peak 10A
From any single motor phase

Motor Capacity 50W ~ 750W

Drive Interface Power
Supply (JP2 Pin. 12)

Voltage 5VDC +/-%5
Max. Current Draw 50mA

Control Method SVPWM
DC2amic Brake Integrated
Encoder Feedback 14/16-bit Single-Turn Absolute

Protection Functions Current, Voltage, Temperature, Over Power, Position
Lost Follow

Position Servo

Command Reference Pulse*1 Pulse+Sign, A/B Phase Quadrature 90° Phase
Differential, CW+CCW

Max. Input Frequency 500kHz

Input Voltage 5VDC ± %5 (Higher voltage available as option)
Over drive photocoupler diode

Positioning Feedback Z Index Pulse*2

Speed Servo

Speed Control Range 0:5000

Input Reference Voltage -10VDC ~ +10VDC ± %5
3,000rpm at ± 5VDC

Max Input Voltage ± 12VDC

Torque Servo
Input Reference Voltage -10VDC ~ +10VDC ± %5
Max Input Voltage ± 12VDC

Environment

Protection IP10
Operation Temperature 0~55°C
Storage Temperature -20 ~ 65°C
Max. Operation Humidity 95RH% (no dew)
Max. Storage Humidity 95RH% (no dew)

Mass 0.2kg

1. CW+CCW command format is available as an option.
2. See section 4.5 for Z index pulse details

1.2 Control Block Diagram

 6
DC2MS-14G-0920A18

Main Power +
Input

-

DC2 AC Servo Drive

+15VDC +5VDC

Main Control
Inverter Circuit

Isolated Gate Control

A

Current B
 Sensor
Current C
Sensor

RS232 JP2
CPU

JP3
Encoder

Serial Port Feedback

LED S1

Isolated I/O Interface

A/D

Analog Input
Voltage Protection

JP4

1.3 Encoder Specification

■ Model

Model Number Type Resolution Data Type Interface Type Measurement Voltage Status

ABS-14-00 Absolute 14bit [16,384ppr] 6-Wire Serial Differential Driver/
Receiver Magnetic +5VDC A

ABS-16-00 Absolute 16bit [65,536ppr] 4-Wire Serial Differential Driver/
Receiver Magnetic +5VDC A

Switching
Power Supply

2 CONNECTIONS AND WIRING

 7
DC2MS-14G-0920A18

2.1 DC2 Servo Drive Body Layout

■ JP1
Power Supply Input

(1)
■ JP5
Servo Motor Power

■ JP2
RS232 Port to PC

■ JP3
I/O Port

■ S1 Drive Status LED
[Green LED]

■ JP4
Encoder Feedback Port

(1) Drive Body Grounding Terminal
[M3 x 5mm Max.]
*Located on left side of body

■ Pin Layout

DO NOT reverse JP1 DC
input polarity. Reversing
polarity will permanently
damage servo drive.

JP1 JP2 JP3

12
11
10
9
8
7
6
5
4
3
2
1

JP4 JP5 Top side of servo drive

Bottom side of servo drive

-

+ +5V

TxD

RxD

NC

NC

NC

Gnd

+5V

S+

S-

Gnd

C

B

A

 8
DC2MS-14G-0920A18

2.2 Connector and Signal Specification

▐ JP1 - Power Supply Input
Connector Type: 5.00mm Pitch Terminal Block
Drive Header: Phoenix MSTBA 2,5/ 2-G
Plug Connector: Phoenix MSTB 2,5/ 2-ST
Recommended Wire Gauge: 0.8mm2 (AWG18)

▐ JP2 RS232 Port to PC
Connector Type: 2.54mm Pitch Rectangular
Drive Header: Molex 70553-0041
Plug Connector: Molex 50-57-9407
Recommended Wire Gauge: 0.3mm2 (AWG22)
Signal Layout:

Type A Type B (Modbus RS485) Type C (CAN)
Pin 1: GND Pin 1: GND Pin 1: GND
Pin 2~4: NC Pin 2: RS485+ Pin 2: CANH
Pin 5: RS232 signal input, RxD, TTL/CMOS level. Pin 3: RS485- Pin 3: CANL
Pin 6: RS232 signal output, TxD, TTL/CMOS level. Pin 4: NC Pin 4: NC
Pin 7: +5(V) output, <10(mA), generated in board. Pin 5: RS232 RxD Pin 5: RS232 RxD

 Pin 6: RS232 TxD Pin 6: RS232 TxD
 Pin 7: +5V Pin 7: +5V

To connect JP2 with PC’s RS232 port, an intermediate cable with level shift buffer is necessary. Intermediate cable
shipped with drive tuning cable [Model No. CA-MRS232-6].

▐ JP3 I/O Port - Position Command Input
Connector Type: 3.5mm Pitch Terminal Block
Drive Header: Phoenix MC 1,5/12-G-3,5
Plug Connector: Phoenix MC 1,5/12-ST-3,5
Recommended Wire Gauge: 0.6mm2 (20AWG)
Signal Layout:

Pin 1: GND (Bottom side of drive)
Pin 2: Analog Command Reference ±10VDC
Pin 3: DIR-, B-, CCW- Pulse Reference
Pin 4: DIR+, B+, CCW+ Pulse Reference
Pin 5: STEP-, A-, CW- Pulse Reference
Pin 6: STEP+, A+, CW+ Pulse Reference
Pin 7: Signal Common for Pin. 8, 9, 10, 11.
Pin 8: Alarm Output
Pin 9: OnPosition Output
Pin 10: Absolute Zero Position Index Output
Pin 11: Drive Disable Input
Pin 12: Drive Internal +5VDC Supply (Top side of drive nearest to JP5)

 9
DC2MS-14G-0920A18

2.2 Connector and Signal Specification

▐ JP4 Encoder Feedback Port
Connector Type: 2.54mm Pitch Rectangular
Drive Header: Molex 70553-0038
Plug Connector: Molex 50-57-9404
Recommended Wire Gauge: 0.3mm2 (AWG22)
Signal Layout:

Pin 1: +5VDC Supply
Pin 2: S+
Pin 3: S-
Pin 4: Gnd

▐ JP5 Servo Motor Power
Connector Type: 5.00mm Pitch Terminal Block
Drive Header: Phoenix MSTBA 2,5/ 3-G
Plug Connector: Phoenix MSTB 2,5/ 3-ST
Recommended Wire Gauge: 0.8mm2 (AWG18)
Signal Layout:

Pin 1: A Phase
Pin 2: B Phase
Pin 3: C Phase

Motor frame should be grounded through Drive Body Grounding Terminal [M3] located on heat sink side.
Crimp an M3 terminal lug onto the servo motor frame wire (Yellow/Green) and attach the lug to the drive
body grounding terminal. Do not use a screw longer than 5mm.

 10
DC2MS-14G-0920A18

Motor Power

- B

C

Encoder Feedback

FG
JP3

External +5VDC
power supply

DC2 Drive Internal +5VDC

+5VDC 12
+5V 0V S1 Status LED

ENA 11

ZRI 10 JP4

ONPOS 9
\BKO

Gnd
S-
S+

+5VDC
Brake External Power

ALM 8

Host Controller COM 7 Level Shifting Buffer

AGIN 2 A/D JP2
D/A

GND 1

PUL+, A+, CW+ 6

+5V

TxD

RxD

NC

A-

A+

Control and tuning
port to PC

[CA-MRS232-6]

External Controller over
RS232, RS485, CAN

PUL-, A-, CW- 5
270Ω

Gnd
DIR+, B+, CCW+ 4

DIR-, B-, CCW- 3

Current
Sensor

Current
Sensor

270Ω

Main Power Input
24 ~ 75VDC

JP1

+

JP5

A

270Ω Brake

2.3 JP3 Main I/O Details

■ Terminal Layout

DC2 AC Servo Drive

I/O
 C

om
m

an
d

In
te

rfa
ce

Ca
n

us
e

In
te

rn
al

or
 E

xte
rn

al
po

we
r s

up
ply

Lin
e D

riv
e

/ O
pe

n
Co

lle
cto

r

● Note the directionality of the JP3 connector and pins before making connections. Pin1
is located nearest to the bottom of the servo drive. Pin12 is located nearest terminal JP5
(Servo Motor Power).

! WARNING

2.3 JP3 Main I/O Details

 11
DC2MS-14G-0920A18

■ JP3 Signal Specification

Refer to Section 2.4 JP3 I/O Connection Circuit for example connection diagram. Standard I/O

levels are +5VDC±%10. Contact ModuSystems the controller uses 12~24VDC level I/O.

Pin No. Signal Symbol Type
12 Drive Internal +5VDC Supply +5VDC Output

Description Connection Circuit

- Drive internal +5VDC output
- Max Current Draw: 50mA
- Relative ground side with JP3 Pin.1

N/A

Pin No. Signal Symbol Type
11 Drive Enable Disable Input ENA Input

Description Connection Circuit
- Apply +5VDC between Pin.7 Common to Disable servo drive
- Motor coasts when disabled (shaft free)
- Disable clears all pulse/analog commands
- Disable clears all position error
- Max. Voltage: +5VDC±%10
- Max. Current: 20mA

[A]
*See section 2.4

Pin No. Signal Symbol Type
10 Absolute Zero Position Index Output ZRI Output

Description Connection Circuit

- Transistor ON (Signal LOW) if servo on Zero Position.
- Triggered at signal falling edge
- Zero Position output fixed to one mechanical motor shaft position per
revolution. Accuracy maintained by absolute encoder.
- Used for precision zeroing or indexing applications.
- See section 4.5 for details.
- Max. Voltage: 30V
- Max. Current: 30mA

[B]
*See section 2.4

2.3 JP3 Main I/O Details

 12
DC2MS-14G-0920A18

Refer to Section 2.4 JP3 I/O Connection Circuit for example connection diagram.

Pin No. Signal Symbol Type

9 OnPosition Output / Brake control BKO output
ONPOS /
BKO

Output

Description Connection Circuit

- Transistor ON (Signal LOW) if servo Off Position.
- Transistor OFF (Signal HIGH) if servo On Position.
- Servo On Position if motor position error within value set by OnPosRange
parameter. See section 5.1.

- If OnPositionRange parameter is set to 127, this output becomes brake
control BKO output. See section 4.6 for details.

- Max. Voltage: 30V
- Max. Current: 30mA

[B]

*See section 2.4

Pin No. Signal Symbol Type
8 Servo Alarm ALM Output

Description Connection Circuit

- Transistor ON (Signal LOW) if servo drive alarmed or faulted
- Servo drive triggers protective alarm relative to Current, Voltage,
Temperature, Over Power, Position Lost Follow
- Max. Voltage: 30V
- Max. Current: 30mA

[B]

*See section 2.4

Pin No. Signal Symbol Type
7 Common COM Output

Description Connection Circuit

- JP3 I/O Pin. 8, 9, 10, 11 Control Signal Common. [A] [B]

*See section 2.4

2.3 JP3 Main I/O Details

 13
DC2MS-14G-0920A18

Refer to Section 2.4 JP3 I/O Connection Circuit for example connection diagram.

Pin No. Signal Symbol Type
6 STEP+, A+, CW+ Pulse Reference STEP+ Input
5 STEP-, A-. CW- Pulse Reference STEP-

4 DIR+, B+. CCW+ Pulse Reference DIR+

3 DIR-, B-. CCW- Pulse Reference DIR-

Description Connection Circuit

- Position command reference pulse input
- Compatible pulse form include:

♦ Pulse + Direction
♦ A/B phase quadrature with 90° phase differential
♦ CW + CCW

- Max. input pulse frequency: 500kHz
- Max. Voltage: +5VDC±%10
- Max. Current: 20mA
- Line Drive / Open Collector circuit on Controller Side
- Input pulse electronically scalable with GEAR_NUM parameter

[C]
*See section 2.4

Pin No. Signal Symbol Type
2 Analog Command Reference AGIN Input
1 Ground GND N/A

Description Connection Circuit

- Analog command reference for Speed/Torque servo mode
- Voltage reference ±10VDC
- ±12VDC max input voltage
- Max current: 0.6mA

[D]

*See section 2.4

 14
DC2MS-14G-0920A18

2.4 JP3 I/O Connection Circuit

■ Type [A] Connection Circuit - General Input Circuit

Applicable Signals:
Pin No. Signal Symbol Type
11 Drive Disable Input ENA Input

Open Collector

+5VDC 270Ω
ENA 11

COM 7

Notes:
- Sink circuit shown.
Source circuit can also
be used.

Relay/Switch

+5VDC

270Ω

ENA 11

COM 7

Notes:

2.4 JP3 I/O Connection Circuit

 15
DC2MS-14G-0920A18

■ Type [B] Connection Circuit - General Output Circuit

Applicable Signals:

Pin No. Signal Symbol Type
10 Absolute Zero Position Index Output ZRI Output
9 OnPosition Output ONPOS Output
8 Servo Alarm ALM Output
7 Common COM N/A

Collector Output

+5VDC

1kΩ

10, 9, 8

COM 7

Notes:

Photo Coupler
+5VDC

1kΩ

10, 9, 8

COM 7

Notes:

Relay
5~24VDC

10, 9, 8

COM 7

Notes:

2.4 JP3 I/O Connection Circuit

 16
DC2MS-14G-0920A18

■ Type [C] Connection Circuit - Position Reference Pulse Input

Applicable Signals:
Pin No. Signal Symbol Type
6 STEP+, A+, CW+ Pulse Reference STEP+ Input
5 STEP-, A-. CW- Pulse Reference STEP-

4 DIR+, B+. CCW+ Pulse Reference DIR+

3 DIR-, B-. CCW- Pulse Reference DIR-

Line Driver

270Ω

6, 4

5, 3

Notes:
- Twisted pair cable with
shield grounded on
receiver side.

Open Collector
(DC2 Internal Power Supply)

+5VDC 12

270Ω
6, 4

5, 3

GND 1

Notes:
- Twisted pair cable with
shield grounded on
receiver side.

Open Collector
(External Power Supply)

270Ω
6, 4

+5VDC

5, 3

Notes:
- Power supply
provided by host
controller or external
source.
- Twisted pair cable with
shield grounded on
receiver side.

2.4 JP3 I/O Connection Circuit

 17
DC2MS-14G-0920A18

■ Type [D] Connection Circuit - Analog Command Reference Input

Applicable Signals:
Pin No. Signal Symbol Type
2 Analog Command Reference AGIN Input
1 Ground GND N/A

Notes:
- Twisted pair cable with
shield grounded on
receiver side.

1 GND

2 AGIN D/A Converter
Op-amp

Potentiometer
etc.

 18
DC2MS-14G-0920A18

DC Power Supply

2.5 Main Power Supply Requirements

The DC2 servo drive has a minimum operation input of +24VDC and max input of +75VDC. The servo
drives internal over-voltage alarm is triggered at +80VDC input and will shut down at this level. Consider
the voltage/speed gradient of the servo motor when selecting power supplies.

A smoothing (reservoir) capacitor is recommended after the DC power supply. The recommended capacity
is 100V 1,000uF per kW of motor load. Connect a fuse before the servo drive according to the circuit size.

Servo Drive Model Max. Motor Capacity Recommended Fuse
DC2-T1A6S-00 200W 15A
DC2-TLA6S-00 750W 30A

■ Single Axis

R

- +

1000uF
100V

1000uF
100V

DC2 Servo Drive

+ JP1

-

■ Multi-Axis (Common DC Bus)

*1 Select fuse and smoothing
capacitor size according to number

- + of drives on DC bus.

1000uF
100V*1

1000uF
100V*1

- +
JP1

- +
JP1

- +
JP1

DC2 Servo Drive
Axis 1

DC2 Servo Drive
Axis 1

DC2 Servo Drive
Axis 1

DC Power Supply

T S

Fuse

Fuse

Fuse

Fuse

● DO NOT reverse the polarity of the DC input power. Reversing the polarity will
permanently damage the servo drive and may cause electric shock. Ensure polarity is
correct before powering ON the servo drive.

! WARNING

110~240VAC Supply

 19
DC2MS-14G-0920A18

- +
JP1

- +
JP1

Regenerative
Circuit

MCU

External Regen. Resistor
DC Power Supply

+

+
JP1

-

■ Regenerative Circuit

An external regenerative circuit may be needed for applications with high load inertia deceleration. Con-
tact ModuSystems for DC2 regenerative circuit requirements.

-

DC2 Servo Drive DC2 Servo Drive DC2 Servo Drive
Axis 1 Axis 1 Axis 1

 20
DC2MS-14G-0920A18

3 START UP

3.1 Mounting and Installation

The DC2 servo drive can be mounted vertically or horizontally (vehicle mount). The servo drives should be
mounted by its rear chassis to an electrically conductive metal panel or plate. When mounting multiple
servo drives, at least 1mm clearance should be left between each unit. The small size of the DC2 servo
drive is compatible with modular mounting. It can be placed adjacent to other devices with 1mm
clearance. Also consider the size of the connectors and cables in front of the servo drive when mounting.

The control cabinet internal temperature should not exceed 40°C. If using a fan to cool the servo drives,
the air flow should parallel the direction of the heat sink fin. The servo drives internally do not have a
cooling fan. Contact ModuSystems if servo drives need to be placed adjacent without spacing.

>1mm >1mm >1mm >1mm

Airflow
Direction

(O
th

er
 D

ev
ic

es
)

(O
th

er
 D

ev
ic

es
)

 21
DC2MS-14G-0920A18

3.2 Timing Chart

■ Power ON Timing

After servo drive power ON, make sure there is at least 150ms time before sending pulse or analog
command to servo drive.

Main Power Supply

S1 Status LED

Servo ON
(Motor Servo Lock)

Command Reference
Input Pulse/Analog

ON

OFF

ON

OFF

ON

OFF

HIGH

LOW

♦ Main Power Supply Cycle
Do not cycle the main power supply quickly as internal power electronics may be permanently damaged.
The main power should be turned on once during each operation cycle and should not be controllable by
software.

♦ Power Off Residual Voltage
After drive power is turned off, the user should wait 60 seconds before touching the servo drive. A residual
voltage may remain in the servo drive after immediate power off and 60 seconds is needed for full
discharge. This time may be longer if a larger smoothing capacitor is connected to the input power line.

The residual voltage may cause the servo motor to rotate for a short period (<1 second) after immediate
power off. Consider this effect for emergency situations and take safety precautions to prevent damage to
personnel, equipment or machines.

50ms

Status LED lit Green

100ms

150ms
Normal Operation

 22
DC2MS-14G-0920A18

3.2 Timing Chart

■ Servo Disable / Enable Timing

When using the ENA signal to disable the servo drive to coast the servo motor, do not cycle this input
rapidly ON/OFF. If the signal is cycled too fast, the servo drive will not have enough time to initialize the
control program during Enable and can cause unwanted or dangerous results. Ensure that in the control
program, the below timing is satisfied. Once Disabled, do not Enable the servo drive during motor coast or
any time motor shaft is rotating, make sure motor shaft is completely stopped before Enable.

ENA

Command Reference Input
Pulse / Analog

ON

OFF

HIGH

LOW

Servo Enabled

Servo Disabled

20ms

 23
DC2MS-14G-0920A18

3.3 DC2DRV Software Communication

■ Version 1.0

♦ PC Running Requirements

Win98/XP/2000/Vista/7
250Mhz CPU
64MB RAM
250MB Hard Disk Space

The servo drive should be powered up with the servo motor encoder feedback and motor power cables
connected. The servo motor shaft will be servo-locked when powered ON. Connect the RS232 tuning
cable from port JP2 to host PC.

♦ DC2DRV Start Up

1) Open the DC2DRV.exe executable
2) Select “COMSET“ --> “COM PORT“
3) Change the port number to the servo drive connected RS232 port, then select “OK”
4) Select “SERVO SETTING”
5) Select DC2 -DRIVER
6) Press Read on the Setting driver parameters and mode dialogue box. After approximately 1~2

seconds, the on-screen parameters will change according to the current internal parameter settings of the
connected servo drive. Ensure that the Driver Status indicates ServoOnPos to indicate that the drive has
closed the position loop with the motor and is fully operational.

♦ Test Movements
1) Select “RS232” under the command input mode option, then click “SAVE ALL“ to

save this setting.
2) Under the Test Motions menu, the user can select one of 4 test motions to JOG, STEP, SINE

or TRIM the servo motor. Only one test motion profile can be run at a time, use the radio buttons below
each section to select the movement profile.

● During Test movement procedures, the servo motor can rotate very quickly in either
direction. Ensure that the servo motor is free to rotate, and no objects are attached to or is
near the motor shaft. Secure the motor by its flange.

! WARNING

 24
DC2MS-14G-0920A18

3.3 DC2DRV Software Communication

■ Version 328.1

♦ PC Requirements

Operating System: Windows XP SP3 or higher
Processor: Pentium 1 GHz or higher
RAM: 512 MB or more
Framework: .NET Framework 4 or higher
Minimum disk space: 60MB

*See User Manual DSFEN for complete instructions:

 25
DC2MS-14G-0920A18

4 OPERATION

4.1 Position Servo Mode

█ Pulse Specifications

Voltage: +5VDC ± %10 (Contact ModuSystems if higher level such as 12/24VDC is
required) Max pulse frequency: 500kHz
Minimum pulse width: 0.8μs

♦ Pulse + Direction

♦ A/B phase quadrature with 90° phase differential

♦ CW + CCW

t2 t1 t3 t4

t1, t4 ≥ 0.8μs
t2, t3 ≤ 1.0μs
t5, t6 ≥ 5.0μs

PUL

DIR

t5 t6

t2 t1 t3 t4

t1, t4 ≥ 0.8μs Phase A
t2, t3 ≤ 1.0μs
t5, t6 ≥ 0.8μs
t7 ≥ 0.1μs

Phase B

t5 t6 t7

t2 t1 t3

t1 ≥ 0.8μs CW
t2, t3 ≤ 1.0μs
t4 ≥ 5.0μs

CCW

t4

4.1 Position Servo Mode

 26
DC2MS-14G-0920A18

█ Reference Pulse Format

The DC2 servo drive accepts FORWARD reference as CLOCKWISE motor shaft rotation as viewed from
motor shaft side.

♦ Pulse + Direction

Forward Reference Reverse Reference

PUL+
JP3-6

PUL+
JP3-6

DIR+
JP3-4

DIR+
JP3-4

♦ A/B phase quadrature with 90° phase differential

Forward Reference Reverse Reference

A+ A+
JP3-6 JP3-6

B+ B+
JP3-4 JP3-4

 A Leads B B Leads A

♦ CW + CCW

Forward Reference Reverse Reference

CW+
JP3-6

CW+
JP3-6

CCW+
JP3-4

CCW+
JP3-4

4.1 Position Servo Mode

 27
DC2MS-14G-0920A18

█ Connection Example

♦ Line Drive Output

♦ Open Collector Output - Internal Power Supply

♦ Open Collector Output - External Power Supply

270Ω
PUL+, A+, CW+ 6

PUL-, A-, CW- 5

270Ω
DIR+, B+, CCW+ 4

+5VDC

DIR-, B-, CCW- 3

DIR+, B+, CCW+

5 PUL-, A-, CW-

6 PUL+, A+, CW+

DIR-, B-, CCW-

4

3

270Ω

270Ω

+5VDC 12
270Ω

PUL+, A+, CW+ 6

PUL-, A-, CW- 5

270Ω
DIR+, B+, CCW+ 4

DIR-, B-, CCW- 3

GND 1

4.1 Position Servo Mode

 28
DC2MS-14G-0920A18

█ Electronic Gearing (GEAR_NUM Parameter)

Gear numbers are set from 500 to 16,384, default value is 4,096. Gear number provides an electrical gear
ratio: 4096 / Gear_Num, from 0.25 ~ 8.192. For example, if Gear number = 4,096, the 16,384 input counts
from pulse will turn motor exactly one revolution. If Gear number = 500, 2,000 pulses will turn motor one
revolution.

For analog input in position servo mode, the analog input is from 0~10VDC range, by using the Gear
Number, 0~10VDC analog input can turn motor from 0~90*4,096/Gear number (degrees). The gear
number has the same effect on the serial Point to Point movement or RS232 command input mode. Gear
number parameter is only effective for position servo mode.

█ Servo In Position Output Specifications (ONPOS)

On position range is a value used for determining whether the motor have reached the commanded position
or not. That on position range is selectable according to customer’s requirement. Suppose the Pset is the
commanded position, and Pmotor is the real motor position, if

|Pset - Pmotor|<=OnRange
it is said motor is ON the commanded position, otherwise not. That OnRange is set from 1~127. The real
position on range is: OnRange * 360(deg)/16,384. Set mouse curser into the OnPosition edit box, input
the desired on position value, then click the save button, On position value will be sent to the Drive with
all other parameters. The ONPOS output (JP3-9) will be HIGH if motor in position and LOW if motor off
position.

█ Servo Position Error Accumulation

The servo drive’s internal position error decides the status of the On Position signal and the Lost Phase
servo drive alarm.

The On Position signal is triggered (LOW) when the servo position error is within the OnPosRange set in
the DC2DRV program. The Lost Phase alarm is triggered when the servo motor is physically 90° or more
out of position for ~2 seconds.

The servo position error is cleared when the drive is disabled using the ENA input and does not accumulate
when the drive is disabled.

 29
DC2MS-14G-0920A18

4.2 Speed Servo Mode

In speed servo mode, the DC2 servo drive takes command from an external ±10VDC analog reference
voltage from the host controller to drive a linear proportional motor speed.

In speed servo mode, the torque output depends on the load on the servo motor and determined by the
motor feedback. Design the system so it can withstand the peak torque of the motor in use.

█ Control Reference

The DC2 servo drive accepts FORWARD reference as CLOCKWISE motor shaft rotation as viewed from
motor shaft side. Positive reference voltage rotates the servo motor in the FORWARD (CLOCKWISE)
direction and negative reference voltage rotates the servo motor in the REVERSE (COUNTER CLOCK-
WISE) direction.

6,000rpm

3,000rpm

-10V

-5V
Reference Voltage

+10V

Motor Speed

+5

Reference
Voltage

Motor
Speed

Reference
Direction

Motor
Direction

+10V 6,000rpm FWD CW

+5V 3,000rpm FWD CW

-3V 1,800rpm REV CCW

 30
DC2MS-14G-0920A18

4.2 Speed Servo Mode

█ Acceleration / Deceleration Soft Start

In Speed Servo Mode, the Max Acceleration parameter in the servo drive can be used to soft start/stop the
servo motor. Since the speed command is sent as a rough step reference, it is often desirable to smooth
out the servo motor’s movement DC2amics. Without soft start, the servo motor can accelerate/decelerate
too instantaneously. Soft start creates a smooth s-curve motion.

The relation to physical acceleration / deceleration time is measured as the rise time from 10% of the tar-
get speed to 90% of the target speed.

Rise from 10% to 90% time = 59.98/(Max Acceleration)2 seconds
Physical acceleration time = 1.2 * 59.98/(Max Acceleration)2 seconds

Rough Motion Smooth Motion!

Max Acceleration

█ Torque Filter Constant

TrqCons is a first order low-pass filter used to smooth torque delivery in speed servo mode
which improves stability and accuracy of servo motor speed. The bigger value means wider
frequency range of that filter. That filter can be expressed as:

a / (S + a), here a = 26*TrqCons ; if TrqCons = 100, then a = 2600.

The filter is used to make the torque sent to the servo torque loop smoother especially for
the heavier load when bigger SpeedGain setting is used. If a very quick response servo with
small load is desirable, the bigger value or even the value 127 should be used to ensure
stability and fast DC2amic follow.

The Torque Filter Constant parameter should only be used in speed servo mode. Leave this
parameter at “127” in position servo mode.

4.3 Torque Servo Mode

 31
DC2MS-14G-0920A18

In torque servo mode, the DC2 servo drive takes command from an external ±10VDC analog reference
voltage from the host controller to drive a linear proportional output current.

█ Control Reference - [1] Capacity Model: DC2-T1

The DC2 servo drive accepts FORWARD reference as CLOCKWISE motor shaft rotation as viewed from
motor shaft side. Positive reference voltage rotates the servo motor in the FORWARD (CLOCKWISE)
direction and negative reference voltage rotates the servo motor in the REVERSE (COUNTER CLOCK-
WISE) direction.

10.0A

5.0 A

-10V

-5V
Reference Voltage

+10V

Current Output

█ Control Reference - [L] Capacity Model: DC2-TL

The DC2 servo drive accepts FORWARD reference as CLOCKWISE motor shaft rotation as viewed from
motor shaft side. Positive reference voltage rotates the servo motor in the FORWARD (CLOCKWISE)
direction and negative reference voltage rotates the servo motor in the REVERSE (COUNTER CLOCK-
WISE) direction.

20.0A

10.0A

-10V

-5V
Reference Voltage

+10V

Current Output

+5

+5

Reference
Voltage

Output
Current

Reference
Direction

Motor
Direction

+10V 10.0A FWD CW

+5V 5.0A FWD CW

-3V 3.0A REV CCW

Reference
Voltage

Output
Current

Reference
Direction

Motor
Direction

+10V 20.0A FWD CW

+5V 10.0A FWD CW

-3V 6.0A REV CCW

4.4 RS232 Command Input Mode

 32
DC2MS-14G-0920A18

The RS232 port is always active after power on for DC2-series servo drive, that active RS232 port could
be used for reading and setting Drive parameters and status, also could be used for sending point to point
position command if the RS232 mode is selected for position command input.

If the position command input mode is selected as Pulse mode or Analog mode, the RS232 port is still
active as mentioned above but it only can be used for reading and setting Drive parameters. The RS232
port could be easily accessed by using the GUI interface DC2DRV.exe after the connection between PC
and the Drive’s RS232 port. This is the easiest way to tune up the servo and make some test movements.
The RS232 port could be accessed by other microcontrollers, or DSP if sending and reading data by using
DC2 Drive’s RS232 protocol.

The PC or DSP is working as Master and the servo drive is always as slave. Several servo drives could
be linked for a serial network integrated multi-axis control.

See (Appendix A) for DC2 servo drive RS232 protocol definitions.

4.5 Absolute Zero Position Index Output (ZRI)

The ZRI signal is output once per motor revolution to facilitate servo homing and indexing functions. ZRI
pulse can also be used to count motor revolutions or monitor servo motor speed. Accuracy of each pulse
is maintained by 14/16-bit absolute encoder. The mechanical output position of ZRI may vary between
each servo motor. It can also be used to compensate for mechanical or ball screw backlash. A calibration
procedure is necessary to set the absolute ZRI position in the controller.

The user should calibrate the position of the ZRI output with respect to the target mechanical position. The
falling edge of the ZRI output (JP3 Pin.10) should be used as the trigger. Pulse width and rising edge of
ZRI should not be used as trigger.

ZRI
JP3 Pin.10

+5V

0

ZRI Falling Edge Trigger

4.6 Holding brake control BKO output

 33
DC2MS-14G-0920A18

When OnPositionRange parameter is set to 127, output from Pin9 becomes BKO output for holding brake
control. Change takes effect after power cycle.

An external relay circuit should be used to control servo motor holding brake. The relay logic should be
triggered by the BKO signal [JP3-9]. An e-stop switch should also be able to engage the holding brake in
emergency situations. The BKO output logic is internally controlled.

- When servo drive is powered off, BKO output is OFF (HIGH), brake relay is off, and brake is engaged
- When servo drive is powered ON and Enabled, BKO output is ON (LOW), brake relay is on, and brake
is disengaged
- When servo drive is Disabled, BKO output is OFF (HIGH), brake relay is off, and brake is engaged
- When servo drive is alarmed/faulted, BKO output is OFF (HIGH), brake relay is off, and brake is engaged

DC2 Servo Drive Servo Motor

● Do not use the holding brake to decelerate or stop the servo motor under normal operation.
● Check the servo motor brake connector polarity before operating the brake.
● The holding brake draws higher current than standard I/O signals, use independent DC power
supplies for the holding brake and the servo drive I/O control interface power.
● Holding brake inertia will affect servo motor performance. Servo motors with holding brake
option will have lower load inertia ratio capacity and angular acceleration.
● Holding brake is servo motor frame size specific. Contact ModuSytems representative for full
specifications.

Servo Motor Power
JP5

A
B
C

A
B
C
FG

S
RY1

PE Brake A
Brake B

Encoder Feedback
JP4

Brake control 24VDC
power supply

* Use dedicated power
supply for brake control.
Do not share with any
other device.

Encoder

JP3
9

ESTOP
BKO RY1 *1

Logic control 5VDC /
24VDC power supply

7 COM

*1 Max voltage 30VDC. Max current 50mA. Recommended 24VDC.

5 PARAMETERS AND TUNING

 34
DC2MS-14G-0920A18

5.1 Parameters Outline

The following parameters are adjustable by connection through RS232 or USB interface from the servo
drive to the PC. No matter the command mode, the JP2 RS232 port is always active for parameter setting
and drive configuration.

The Drive configuration and servo cons are stored in the EEPROM of servo drive when the save button is
pushed or parameters setting is issued through the serial communication.

The guaranteed write cycle for the EEPROM is 1 million times. Do not use serial communication to
constantly change the drive parameters as this will decrease servo drive life span. Major parameters
change and setting should only be done during initial testing and tuning. Actual drive operation should not
require constant parameter changes unless changing servo control modes on the fly through RS232.

Parameter Name Setting Range Details Applicable Servo
Mode

Main Gain

[1 : 127]

The main gain for the servo loop usually to be increased
as the motor load increases. The bigger value of MainGain
means wider frequency range of servo loop relatively.

Position
Speed
Torque
RS232

Speed Gain

[1 : 127]

The speed gain for the servo loop usually to be increased
as the motor load increases. The bigger value of speed
Gain means narrower frequency range of servo loop
relatively. Physically, heavier loads or higher inertia loads
should have lower DC2amic ability, so the servo loop
frequency range should be narrower by using bigger value
of Speed Gain. If the Speed Gain is too high, there will
be some loud noise because the torque command will be
too coarse, not smooth, the smaller Torque Constant (see
TrqCons) could be used to attenuate this noise.

Position
Speed
Torque
RS232

Integration Gain

[1 : 127]

There is an integrator in the servo loop to ensure the error
between position command and real position is zero
during the steady state. Also, that integrator will let servo
have more ability to attenuate the outside disturbance
torque. The bigger the value of IntGain, the more ability of
the servo to attenuate the outside disturbance torque.
Integration Gain should be decreased for heavier loads or
higher inertia loads.

Position
Speed
Torque
RS232

Torque Constant

[1 : 127]

TrqCons is a first order filter constant, the bigger value
means wider frequency range of that filter. That filter can
be expressed as : a / (S + a), here a = 26*TrqCons, if
TrqCons = 100, then a = 2600. That filter is used to make
the torque sent to torque loop smoother, especially for
heavier loads when bigger SpeedGain is used. If a very
quick response servo with small load is desirable, a bigger
value or even the value 127 should be used to ensure the
stability and DC2amic performance.

Speed
Torque
RS232

 35
DC2MS-14G-0920A18

5.1 Parameters Outline

Parameter Name Setting Range Details Applicable Servo
Mode

Max Acceleration

[1 : 127]

Determine the S-curve acceleration when using RS232
mode to make point to point motion linear/circular. Also
controls the response time of the first order low pass filter
in speed and torque servo control (soft start).

RS232
Speed
Torque

Max Speed

[1 : 127]

Determine the S-curve max speed when using RS232
mode to make point to point motion linear/circular.

RS232

Driver ID

[1 : 126]

Every drive has a unique ID number, which can be
assigned or read out by using ServoSetting dialog box.
Applicable when RS485net box not checked and there is
only one Drive connected through the RS232 port.
The default ID number for every Drive is 0. That ID
number can be used for the network connection of RS485
or for drive unit identification purposes. When RS485net
box is checked and there are more than one Drive
connected to the RS485/232 network, only the setting for
the Drive with the indicated ID number in the ServoSetting
dialog box can be read out or saved.

Position
Speed
Torque
RS232/485

On Position Range

[1 : 127]

On position range is a value used for determining whether
the motor has reached the command position or not.
That position range is selectable according to user’s
requirement. Suppose the Pset is the commanded posi-
tion, and Pmotor is the real motor position, if

|Pset - Pmotor|<=OnRange
it is said motor is on the commanded position, otherwise
not.

Position
Speed
Torque
RS232

Gear Num

[500 : 16,384]

The amount of motor travel with reference to the number
of input pulses is set using the parameter Gear_Num.
The number of reference pulse needed for one complete
motor revolution is calculated as,

One motor revolution = 4xGEAR_NUM

For example, if Gear_Num is set to 4096, then 16,384
pulses are needed from the host controller for the motor to
make one complete revolution.

Position
RS232

 36
DC2MS-14G-0920A18

adaptive

Speed Servo Mode

Motor Vibration/Noise

Decrease Main Gain,
decrease Speed Gain

If still unstable

Unstable/Vibration

Tuning Begin
Run Servo Motor

Decrease Integration Gain Decrease Integration Gain

Decrease
Torque Filter Constant

Increase Main Gain,
increase Speed Gain until
overshooting suppressed

Position Overshooting or
Oscillation.

The DC2 servo drive features simple 3 parameter Gain tuning to achieve optimized smooth performance.
The user should adjust the servo gain parameters Main Gain, Speed Gain and Integration Gain until they
achieve target response qualities. These parameters are all adjustable using the DC2DRV program.

The built in Adaptive Tuning algorithm optimizes servo region of stability relative to load inertia. If the 3
gain parameters are close to ideal settings, the servo will always achieve the best response.

The overall method of Gain tuning follows as load mass or load inertia increase, the Main Gain and Speed
Gain parameters should be increased. If these are set too high, the servo may be over-tuned and start
vibrating or become noisy. The parameters should be increased/decreased until the motor smoothly
follows command without vibration, noise or oscillations. The user can then fine tune the parameters to
make the motor “harder“ (faster response, more rigid motion) or “softer“ (slower response, smoother
motion).

The servo motor should be coupled to the final machine before tuning. Make sure during tuning, the motor
is running the load and speed of the final machine or design. The user should use a trial-and-error method
to achieve the desired servo response.

In Speed and Torque servo mode, the Torque Filter Constant parameter can be adjusted to further smooth
the torque delivery and improve motor speed accuracy.

♦ Gain Tuning Procedure Flow

If still unstable

5.2 Servo Drive Gain Tuning II

 37
DC2MS-14G-0920A18

5.2 Servo Drive Gain Tuning

█ Sample Load Type Tunings

♦ Ball Screw

Ball screw systems are mechanically very rigid and stiff. If high resolution pitch (e.g. 5mm
or 10mm) the default setting could even be used. The servo drive can be easily tuned
using Main Gain, Speed Gain, and Integration Gain. Increase Main Gain, Speed Gain and
Integration Gain relative to load mass until target response achieved. Decrease Integration
Gain if load inertia is big and system oscillates.

♦ Direct Mechanical Drive (Rigid systems, Robots)

Depending on load mass and inertia, increase Main Gain, Speed Gain and Integration Gain
until target response achieved. Decrease Integration Gain if load inertia is big and system
oscillates. In speed/torque servo mode, if relative load inertia is very high, the high-Speed
Gain might increase motor noise, then decrease the Torque Filter Constant to attenuate
torque loop noise.

♦ Belt Drive / Pulley

Belt drive or pulley systems are low mechanical rigidity with slower response. Main Gain
and Speed Gain should be increased with higher load mass and relative load inertia.
Integration Gain should be decreased to give the position loop more time to react to the low
rigidity system.

 38
DC2MS-14G-0920A18

6 MAINTENANCE

6.1 Alarm Specifications

The DC2 servo drive is protected by 5 alarms. The S1 status indicator LED will flash to indicate when an
alarm is triggered. The specific alarm status can be read using the DC2DRV program.

♦ Internal Driver Status Readout

(1) Connect the PC to the servo drive JP2 port using RS232 cable
(2) Press Read on the Setting driver parameters and mode main screen.
(3) The Driver Status box will display the status of the Servo Drive.

Alarm Cause Recommended Correction

Over Voltage

The internal DC bus voltage has
exceeded the allowed maximum
levels. The input DC voltage is too
high.

- Check and confirm the connections to
the servo motor.
- Check that the servo motor is driving a
mass appropriate to its size.
- Check for any mechanical irregularities
that might be preventing the motors to
move freely.
- Add an external regenerative resistor

Over Temperature

The servo drives protective thermal
resistor has detected an unusually
high temperature inside the drive.
The control power transistor
temperature is too high.

- Check that the drive’s ventilation
openings and heat sink are not being
blocked.
- Consult the servo drive’s ambient
temperature specifications and check if
the operation conditions are met.

Lost Phase

The encoder has detected an
irresolvable position error in the
motor relative to the command
signal.

- Check that the encoder feedback cable
is securely plugged from the servo motor
to the JP3 port of the servo drive.
- Check for any mechanical irregularities
that might be preventing the motors to
move freely.

Over Power

The servo drive has experienced an
output power exceeding the rated
value relative to the average value.

- Check and confirm the connections to
the servo motor.
- Check that the servo motor is driving a
mass appropriate to its size.
- Check for any mechanical irregularities
that might be preventing the motors to
move freely.

Over Current

The servo motor cannot move to its
command position and there is a
backlog of current in the servo drive
to try to move the servo motor.

- Check that the encoder feedback cable
is securely plugged from the servo motor
to the JP3 port of the servo drive.
- Check for any mechanical irregularities
that might be preventing the motors to
move freely.

 39
DC2MS-14G-0920A18

6.1 Alarm Specifications

♦ Alarm Motor Stop

The power to the servo motor will be stopped when an alarm is triggered. Internal servo control turns off
and servo motor shaft becomes free. Power remains in the logic circuit for drive diagnostic and drive status
reading. All commands including pulse, analog and RS232 will be ignored and will not accumulate the
internal position error.

♦ Alarm Reset

Once the servo drive triggers an alarm, the user should use the DC2DRV program to read out the alarm
condition then inspect the machine, load or operation for cause to the alarm. The problem should be fixed
before re-setting the servo drive and running again. The servo drive main power should be cycled to fully
re-set and clear the servo alarm status.

6.2 - Drive Maintenance

Do not perform maintenance on the servo drive unless instructed to do so by ModuSystems. The servo
drive cover or chassis should never be removed as high voltage components can cause electric short,
shock or other damage upon contact. Disassembly, repairs or any other physical modification to the servo
drive is not permitted unless approved by ModuSystems.

♦ Regular Inspection

Inspect the servo drive regularly for:
● Dirt, dust or oil on the servo drive - make sure the servo drive cooling duct and heat
sink are free from debris
● Environment - ambient temperature, humidity and vibration according to servo drive
specification
● Loose screws
● Physical damage to servo drive or internal components

● If the servo motor is coupled to a vertical axis that can drop due to gravity when the shaft
becomes free, take measure to prevent injury or damage when the drive alarm is triggered.
A motor with brake option may be necessary to stop vertical axis, or any axis acted on by an
external force, from dropping or crashing.

WARNING !

 40
DC2MS-14G-0920A18

DC232M
7 RS232 Communication Protocol

The RS232 port is always active after power on for DC2 series drive. This active RS232 port could be used for
reading and setting Drive parameters and status and also can be used for sending point to point position
command if the RS232 mode is selected for position command input.

This DC232M integrated motion command includes point-to-point S-curve, linear, arc and circular interpolation
for up to 3-axis of coordinated motion. These profiles can be easily executed using dedicated function codes.
The DC2 servo drive features the most advanced built in S-Curve Generator in the industry to realize point to
point S-Curve motion. Response is extremely fast, and motion filters are built in to optimize stability and provide
smoothest motor response. Featuring DC2amic Target Position Update (DTPU) technology, target position can
be instantaneously changed (without current command completion) and robot movements can be realized with
much faster cycle time and higher universal efficiency.

If the position command is selected as other modes, such as PULSE/DIR, CW/CCW, SPI or Analog mode, the
RS232 port is still active as mentioned above but only can be used for reading and setting drive parameters and
reading and setting drive status registers (Section 7.3).

The RS232 port can be accessed by a variety of host controllers including PC, microcontroller, FPGA, Arduino
or motion controller. The host device is working as a master and the servo drive is always working as a slave.
Several drives can be linked for a serial network in RS485.

The sample code in Section 7.7A Appendix : C++ Code for Serial Communication Protocol should be used
extensively to efficiently and accurately generate the RS232 data packet. Each subroutine function automatically
generates data packet structure for sending commands and reading from DC2 servo drive.

Never use serial communication to set the Drive configuration or parameters at a fast rate. This will cause servo
drive EEPROM busy in writing parameters all the time and also shorten its lifetime. The guaranteed parameter
writing cycle for EEPROM is 1 million times. Once a group of parameters and configuration are set, use it until
next necessary change.

P O S I T I O N I N G

RS232 Functions Include:
♦ Reading and changing servo drive parameters
♦ Reading and monitoring servo drive status including alarm, busy, in position, enable etc.
♦ Reading and monitoring servo drive configuration including servo mode,

incremental/absolute mode, command mode, enable etc.
♦ Absolute encoder homing
♦ Absolute encoder position monitor: 16-bit absolute, 32-bit multi-turn
♦ Initiate generic profiles ConstSpeed, Square Wave, Sine Wave
♦ DC232M motion control commands including:

♦ S-Curve point to point
♦ 3-axis coordinated linear motion
♦ 3-axis coordinated circular motion (arc, circle, oval)
♦ Incremental (relative) or absolute modes

Example Host Controllers:
- Microcontroller/Embedded Controller
- PC (windows serial port via C/C++/C#, VB, Java etc.)
- PLC/HMI with serial output
- Arduino

 41
DC2MS-14G-0920A18

DC232M

Host Controller DC2 Servo Drive JP2

+5VDC +5VDC 7

RxD TxD 6

TxD RxD 5

Gnd Gnd 1
74AC125

█ Connector Specifications

Connection: JP2
Connector Type: 2.54mm Pitch Rectangular
Drive Header: Molex 70553-0041
Plug Connector: Molex 50-57-9407
Recommended Wire Gauge: 0.3mm2 (AWG22)

To connect JP2 with a PC’s RS232 port, an intermediate level shift buffer is necessary [buffer component:
ADM232]. The CA-MRS232-6 and CA-MTUSB-60 tuning cables have the level shift buffer built-in. RxD and TxD
RS232 signal from connector JP2 is TTL/CMOS level.

Do not connect servo drive directly to PC RS232 port without buffer component.

Pin. 1 Gnd
Pin. 2~4 Reserved
Pin. 5 RS232 RxD signal input to Drive, CMOS/TTL level signal
Pin. 6 RS232 TxD signal output from Drive, CMOS/TTL level signal
Pin. 7 +5VDC output from Drive

Max 10m

█ Communication Format

Baud Rate 38400
Start/Stop Bit 1
Odd/Even Verify Bit No
Data 8-bit

 Full Duplex
 Asynchronous (UART)
Voltage TTL/CMOS

7.1 Interface and Format

! WARNING
Pin. 2 ~ 4 are reserved for factory use and are internally connected. Connecting
these pins to external devices may result in permanent damage to servo drive.

 42
DC2MS-14G-0920A18

7.1 Interface and Format

█ Transmission

The DC2 servo drive is always under command from the host controller. When a function is called, the servo
drive will move the servo motor, return a data packet with the requested information, or set a parameter value.
Once a complete data packet has been received, the servo drive will not return any confirmation or
acknowledgement code. The command motion will be immediately run, requested data will be returned, or new
parameter is saved.

The subroutine in Section 7.5A Appendix should be implemented to automatically generate a full data packet.
Otherwise, the host controller must ensure each data packet is complete and accurate before transmission.

█ Reception

The DC2 servo drive follows the same data packet format and structure when returning data. Each data packet is
sent one byte at a time consisting of 8 data bits and two start stop bits for a total of 10 bits. Each byte will be sent
sequentially until complete packet is sent.

The host controller must process received data in shift register as soon as each byte is transmitted to avoid
overflow and garbage data. Alternatively, the receiver shift register buffer must have enough address to store
the complete packet. The DC2 servo drive will send each byte immediately after another, so at 38400 baud,
each byte will take approximately 260us to transmit - host controller should read or sample at this rate or faster
when receiving data.

 43
DC2MS-14G-0920A18

DC232M

7.2.1 Structure

Byte : consists of 8 bits, represented by b7b6b5b4b3b2b1b0 or b[7:0]. b7 is MSB and b0 is LSB, so called little
endian. Each packet consists of several bytes, expressed as:

Packet = Bn Bn-1 Bn-2 B1 B0
Packet length = n+1, Total n+1 bytes

Bn is the start byte, B0 is end byte, similar to the byte structure, Bn is MSB and B0 is LSB as little-endian

rule. The integer n varies as the variation of packet length. Functionally, a packet could be expressed as:

Packet = ID + packetLength + functioncode + data + checksum

ID One byte (Start byte)
packetLength + functioncode One byte
data One to four bytes
checksum One byte

Minimum packet length is 4 bytes, packet length 4 (n=3), 1 data byte.
Maximum packet length is 7 bytes, packet length 7 (n=6), 4 data byte.

The minimum packet length is 4. There is at least one data byte, for some function code that does not require
data, this data byte is meaningless, or called dummy byte which can be set to any value [0~127] and does not
affect the overall function of that packet.

7.2.2 Features for the byte inside a packet

The start byte takes form of 0xxxxxxx, or MSB is 0, x for 0 or 1. Any other byte except the start byte takes the
form of 1xxxxxxx, where x could be 0 or 1. Most significant bit in a byte can be used for determining if it is a
packet’s start byte or not.

7.2.3 Start byte Bn

The MSB bit of start byte is always zero, the other seven bits are used for the Drive ID number which is set from
0 ~ 63. The ID number can also be assigned through the DC2DRV software.

ID number 127 is reserved for every drive for broadcasting purposes. In other words, 127 is the general ID
number. ID numbers 64 ~ 126 are internally reserved.

The communicating servo drive must be set to the same ID number to accept and execute data. The drive ID
can only be set if the RS485/232 Net check box is not checked (in the DC2DRV software).

7.2 Packet Definition

7.2 Packet Definition

 44
DC2MS-14G-0920A18

7.2.4 Bn-1 byte

The Bn-1 byte is used for representing the packet function and packet length.

Bn-1 = 1 b6 b5 b4 b3 b2 b1 b0

The bit b6 and b5 are for the length of packet, expressed as:

The bit b4~b0 are used for the packet function, expressed as:

Function (Sent by host) b[4:0] Data (Bytes) Remarks
Set_Origin 0x00 1(dummy) Set current position as zero ; See section 7.4.2
Go_Absolute_Pos 0x01 1~4 See section 7.4.1
Make_LinearLine 0x02 1~4
Go_Relative_Pos 0x03 1~4 See section 7.4.1
Make_CircularArc 0x04 1~4
Assign_Drive_ID 0x05 1 Assign ID to Drive; See Section 7.6
Read_Drive_ID 0x06 1(dummy)
Set_Drive_Config 0x07 1 One byte Configuration. See Section 7.3
Read_Drive_Config 0x08 1(dummy) Read Drive configuration. See Section 7.3
RegisterRead_Drive_Status 0x09 1(dummy) Ask for Drive status. See Section 7.3
Turn_ConstSpeed 0x0a 1~3 See section 7.4.2
Square_Wave 0x0b 1~3 See section 7.4.2
Sin_Wave 0x0c 1~3 See section 7.4.2
SS_Frequency 0x0d 1~3 See section 7.4.2
General_Read 0x0e 1~4 Read Drive position set
ForMotorDefine 0x0f 1 Internal Function - Not customer accessible
Set_MainGain 0x10 1
Set_SpeedGain 0x11 1
Set_IntGain 0x12 1
Set_TrqCons 0x13 1
Set_HighSpeed 0x14 1 Set MaxSpd,1~127 ; See section 7.4, 7.5
Set_HighAccel 0x15 1 Set MaxAcl,1~127 ; See section 7.4, 7.5

Set_Pos_OnRange 0x16 1 If |Pset-Pmotor|<= OnRange, then motor on Pos
OnRange ;1~127

Set_GearNumber 0x17 2 Gear_Number [500~16,384] ; ; See section 7.4, 7.5
Read_MainGain 0x18 1(dummy) See section 7.5 Example 11
Read_SpeedGain 0x19 1(dummy) See section 7.5 Example 11
Read_IntGain 0x1a 1(dummy) See section 7.5 Example 11
Read_TrqCons 0x1b 1(dummy) See section 7.5 Example 11
Read_HighSpeed 0x1c 1(dummy) See section 7.5 Example 11 ; See section 7.4
Read_HighAccel 0x1d 1(dummy) See section 7.5 Example 11 ; See section 7.4
Read_Pos_OnRange 0x1e 1(dummy) See section 7.5 Example 11
Read_GearNumber 0x1f 1(dummy) See section 7.5 Example 11 ; See section 7.4

b6 b5 Total packet length(=n+1)
0 0 4
0 1 5
1 0 6
1 1 7

7.2 Packet Definition

 45
DC2MS-14G-0920A18

Functions (Sent by DC2 drive) b[4:0] Data (Bytes) Remarks

Not used 0x00 ~

0x0a
 *Do not read or write to these addresses

Is_MainGain 0x10 1 Returns [1:127] unsigned data
Is_SpeedGain 0x11 1 Returns [1:127] unsigned data
Is_IntGain 0x12 1 Returns [1:127] unsigned data
Is_TrqCons 0x13 1 Returns [1:127] unsigned data
Is_HighSpeed 0x14 1 Returns [1:127] unsigned data
Is_HighAccel 0x15 1 Returns [1:127] unsigned data
Is_Drive_ID 0x16 1 Returns [1:127] unsigned data
Is_PosOn_Range 0x17 1 Returns [1:127] unsigned data
Is_GearNumber 0x18 2
Is_Status 0x19 1
Is_Config 0x1a 1
Is_AbsPos32 0x1b 1~4
Is_TrqCurrent 0x1e 1~4

Functions 0x10 ~ 0x1e are sent from the DC2 drive in response to a function to request data. For example,
when Read_MainGain 0x18 is sent to the DC2 drive, Is_MainGain 0x10 is returned as the function with the
Main Gain value as the data. See section 7.5 Example 11.

7.2.5 Bn-2 ~ B1 bytes

Bn-2 ~ B1 (n>2) are used for representing the data in the packet. 7bits of a byte is used for containing the data.
The first bit MSB is always 1.

n Data Range Remark
3 -64 ~ 63 Only B1 is used
4 -8,192 ~ 8,191 Only B2, B1 are used
5 -1,048,576 ~ 1,048,575 B3, B2, B1 are used
6 -134,217,728 ~ 134,217,727 B4, B3, B2, B1 are used

The minimum packet length is 4. There is at least one data byte, for some function code that does not require
data, this data byte is meaningless, or called dummy byte which can be set to any value [0~127] and does not
affect the overall function of that packet.

7.2 Packet Definition

 46
DC2MS-14G-0920A18

7.2.6 B0 Byte

B0 byte is used for check sum, which is calculated from Bn~B1 as:

S = Bn + Bn-1 + Bn-2 +.B1
B0 = 0x80 + Mod(S , 128), B0 = 0x80 + S - 128*[S/128]
B0 = 128 ~ 255

After receiving a packet, then calculate Temp = Mod(S , 128), if Temp = B0 , there is no error, otherwise there is
error during the packet transmission.

Example manual calculation:

Given: Command to rotate ID=8 motor at 50rpm constant speed
Packet Length = 4
n = 3
B3 = 0x08
B2 = 0x8a
B1 = 0xb2

S = B3 + B2 + B1 = 0x144 = 324
B0 = 0x80 + Mod(S , 128)

= 0x80 + Mod(324, 128)
= 0x80 + 0x44

B0 = c4

 47
DC2MS-14G-0920A18

DC232M

Drive configuration such as command input mode (RS232, CW/CCW etc.), alarm status, busy status are de-
scribed by the two register Config and Status which are stored inside Drives EEPROM and can be read or set
through RS232 communication.

█ Drive Status

Driver status is a byte data, lower 7 bit valid for indicating the Drive status, is it in the state of servo, alarm, on
position, or free.

Status = x b6 b5 b4 b3 b2 b1 b0

b0 = 0 : On position, i.e. |Pset - Pmotor| < = OnRange
b0 = 1 : motor busy, or |Pset - Pmotor|> OnRange
b1 = 0 : motor servo
b1 = 1 : motor free
b4 b3 b2 = 0 : No alarm

1 : motor lost phase alarm, |Pset - Pmotor|>8192(steps), 180(deg)
2 : motor over current alarm
3 : motor overheat alarm, or motor over power
4 : there is error for CRC code check, refuse to accept current command
5~ 7 : TBD

b5 = 0 : means built in S-curve, linear, circular motion completed; waiting for next motion
b5 = 1 : means built in S-curve, linear, circular motion is busy on current motion
b6 : pin2 status of JP3,used for Host PC to detect CNC zero position or others

█ Drive Configuration

Drive configuration for communication mode, servo mode etc is expressed by Config.

Config = x b6 b5 b4 b3 b2 b1 b0

b1 b0 = 0 : RS232 mode
1 : CW,CCW mode
2 : Pulse/Dir or (SPI mode Optional)
3 : Analog mode

b2 = 0 : works as relative mode(default) like normal optical encoder
b2 = 1 : works as absolute position system, motor will back to absolute zero or POS2(Stored in

sensor) automatically after power on reset.
b4 b3 = 0 : Position servo as default

1 : Speed servo
2 : Torque servo
3 : TBD

b5 = 0 : let Drive servo
b5 = 1 : let Drive free, motor could be turned freely
b6 : TBD

The default Config = x0000000, RS232 communication mode, absolute position sensor works as relative mode,
position servo, servo enabled. If the bit 5 of Config register is set to be 1, Drive will let motor shaft free (servo
disabled).

7.3 Drive Configuration and Status Register

 48
DC2MS-14G-0920A18

DC232M

7.4.1 Point to Point Movement (S-Curve)

Max Acceleration, Max Speed, and Gear Number are important data parameters for generating the S-Curve. The
DC2 servo drive also applies a smoothing filter to the acceleration profile to generate the best S-Curve
performance. The S-Curve profile is calculated as the following,

Gear Ratio =
4,096

GEAR NUMBER

Maximum Motor Speed [rpm] =
(MaxSpd+3)*(MaxSpd+3)

16

* 12.21 * Gear Ratio

Maximum Motor Acceleration [rpm/s] = MaxAcl * 635.78 * Gear Ratio

Motor Movement Position = Command Position * Gear Ratio * 4

Example:

Set parameter Output

Gear_Num = 4096 Gear Ratio = 1
MaxSpd = 48 Maximum Motor Speed = 1985 rpm
MaxAcl = 30 Maximum Motor Acceleration = 19073 rpm/s
Command Position = 140,000 Motor Movement Position = 560,000 positions

S-Curve:

Acceleration Time = 0.104 s
Distance During Acceleration = 1.72 rev
Constant Speed Travel Time = 0.154 s
Total S-Curve Time = 0.362 s

2500

2000

1500

1000

500

0
0 0.05

0.10

0.15

0.20

Time (s)

0.25

0.30 0.35 0.40

7.4 Common Function Details

DC2 AC SERVO SYSTEM - RS232 MOTION
P O S I T I O N I N G

0.104s 0.258s 0.362s

1985rpm

Sp
ee

d
(rp

m
)

 49
DC2MS-14G-0920A18

7.4 Common Function Details

7.4.2 Constant Speed, Square Wave, Sin Wave

█ Turn Constant Speed

Function (Sent by host) b[4:0] Data (Bytes)
Turn_ConstSpeed 0x0a 1~3

The servo motor rotates at constant speed according to the rpm speed set by the Data Bytes. The direction of
rotation is CW (as viewed from shaft side) for positive speed and CCW for negative speed.

Example:

Set command Motion
Function = 0x0a (Turn_ConstSpeed)
Data = 0x578 (1,400) (use 2 data bytes B2, B1)
B2 = 1000 0101 *MSB must be 1
B1 = 1111 1000 *MSB must be 1

Servomotor rotates in CW direction (as viewed from shaft
side) at 1,400rpm

Function = 0x0a (Turn_ConstSpeed)
Data = 0xff88 (-120) (use 2 data bytes B2, B1)
0xff88 = 0x1111 1111 1000 1000
B2 = 1111 1111
B1 = 1000 1000

Servomotor rotates in CCW direction (as viewed from shaft
side) at 120rpm

█ Square Wave Motion

Function (Sent by host) b[4:0] Data (Bytes)
Square_Wave 0x0b 1~3
SS_Frequency 0x0d 1~3

The servo motor makes a square wave motion with instantaneous acceleration and deceleration com-
mand. The amplitude is set by the Square_Wave function Data and the frequency is set by the SS_Fre-
quency function Data Bytes. The motion is executed as soon as the Square_Wave function is received.
Note that Square_Wave and Sin_Wave shares the same SS_Frequency data value. The square wave-
form is generated internally within the DC2 servo drive.

█ Sine Wave Motion

Function (Sent by host) b[4:0] Data (Bytes)
Sin_Wave 0x0c 1~3
SS_Frequency 0x0d 1~3

The servo motor makes a sine wave motion with continuous acceleration and deceleration. The amplitude
is set by the Sin_Wave function Data and the frequency is set by the SS_Frequency function Data Bytes.
The motion is executed as soon as the Sin_Wave function is received. Note that Sin_Wave and Square_
Wave shares the same SS_Frequency data value. The sine waveform is generated internally within the
DC2 servo drive.

 50
DC2MS-14G-0920A18

DC232M

The DC2 servo drives built in S-Curve generator is able to update the target position instantaneously regardless
of whether the current command position has been completed or not. As soon as a new command position is
received, the servo drive immediately updates the servomotor target to the newest position. This function is
applicable to both relative (incremental) and absolute positioning for all linear, or arc path profiles.

Without DC2amic Target Position Update DTPU technology, the servo drive must wait until the first, or current
position command is completed before executing the next one. This limits the rate at which the motor position
can be updated and can also have detrimental effects on safety for the machine and the operator. With DTPU
technology, the servo drive is always under active command from the controller, allowing much faster cycle time
and higher universal efficiency.

The servo drive also applies a curved acceleration command to the S-Curve to maintain the smoothest servo
motor motion. At each S-Curve “transition” point, the normally rigid path is curved into smooth speed transitions.

█ Efficiency

When the axis is command to a new position, the servo drive immediately updates the target position and
generates new S-Curve profile to reach new target position. Without DTPU technology, the axis must first finish
its current command before executing the next one, causing a delay in the overall positioning time.

This also allows more flexibility in programming and path planning as the controller no longer needs to wait until
a particular movement is finished before calculating the succeeding one. Robotic movements can be controlled
and commanded in real-time, significantly simplifying kinematic motion planning requirements on the controller.
Machine-level trajectory planning can almost be eliminated.

7.5 Dynamic Target Position Update (DTPU)

Without DTPU

t t t
t1 : Second command position given
t2 : First position reached,

second position executed
t3 : Second position reached

Time

With DTPU Time Reduced

t t
t1 : Second command position

given, servo drive immediately
targets to second position

t2 : Second position reached

Time

Sp
ee

d
Sp

ee
d

 51
DC2MS-14G-0920A18

 7.5 DC2amic Target Position Update (DTPU)

█ Curved Acceleration

The DTPU algorithm also applies a curved acceleration to maintain smooth motion. At each S-Curve transition
point, the acceleration/deceleration is curved at the edges, so speed is smoothly changed. This decreases
motor vibration. The smoothing is applied relative to total command movement so overall distance and position
accuracy is not affected.

Time Time

█ Safety

DC2amic Target Position Update DTPU allows the axis to be commanded as soon as a safety hazard or warning
is detected. This means protection measures can be executed immediately. Without DTPU, the axis must finish
the current positioning before executing protection measures.

Without DTPU

t1 : Safety warning/hazard detected,
axis commanded to retract

t2 : Current positioning reached,
axis commanded to retract

Time

With DTPU

t1 : Safety warning/hazard detected,
axis commanded to retract

t2 : Axis immediately retracts to safe
position

Time

t1 t2

t1

Sp
ee

d
Sp

ee
d

Acceleration

Transition Points

Speed

Acceleration

Speed

Smooth Speed Transitions!

 52
DC2MS-14G-0920A18

DC232M

Sent Packet (to DNY drive)
Function Function Code Data (Bytes)
Set_Drive_Config 0x07 1

Bn Bn-1 Bn-2 B0

Drive configuration setting

Sent Packet (from DC2 drive)

None

Sent Packet (to DNY drive)
Function Function Code Data (Bytes)
Read_Drive_Config 0x08 1 (dummy)

Bn Bn-1 Bn-2 B0

Dummy bits

Received Packet (from DC2 drive)
Is_Config 0x1a 1

Bn Bn-1 Bn-2 B0

Packet Length = 4 Drive configuration data
Function = 0x1a

Sent Packet (to DNY drive)
Function Function Code Data (Bytes)
Read_Drive_Status 0x09 1 (dummy)

Bn Bn-1 Bn-2 B0

Dummy bits

Received Packet (from DC2 drive)
Is_Status 0x19 1

Bn Bn-1 Bn-2 B0

Packet Length = 4 Drive status data
Function = 0x19

7.6 Packet Structure Examples P O S I T I O N I N G

0xxxxxxx 10000111 1 b6 b5 b4 b3 b2 b1 b0 1xxxxxxx

0xxxxxxx 10001000 1 b6 b5 b4 b3 b2 b1 b0 1xxxxxxx

0xxxxxxx 10011010 1 b6 b5 b4 b3 b2 b1 b0 1xxxxxxx

0xxxxxxx 10001000 1 b6 b5 b4 b3 b2 b1 b0 1xxxxxxx

0xxxxxxx 10011001 1 b6 b5 b4 b3 b2 b1 b0 1xxxxxxx

 53
DC2MS-14G-0920A18

DC232M

■ EXAMPLE 1

■ EXAMPLE 2

■ EXAMPLE 3

7.7 Application Examples

DC2 AC SERVO SYSTEM - RS232 MOTION
P O S I T I O N I N G

Method:

B3 = 0x03
B2 = 0x80 + (PacketLenght-4)*32 + Set_Origin =0x80 + 0x00=0x80
B1 = 0x80 + 0x00 = 0x80
S = B3 + B2 + B1 = 0x03 + 0x80 + 0x80 = 0x103
B0 = 0x80 + Mod(S,128) = 0x83

As shown in the Sample Code, by calling the subroutine:

Send_Package(0x03,0), when Global_Func = (char)Set_Origin = 0x00.

The code will generate above B3~B0.

The motor power on position is the default absolute zero position, or it is the position set by using set absolute
zero function (0x00).

Condition:

Make 3rd axis motor right now position be the absolute zero. position(= 0), ID = 3. One byte dummy data 0x00,
Packet Length = 4.

Method:

B3 = 0x03
B2 = 0x80 + (PacketLenght-4)*32 + Go_Absolute_Pos=0x80 + 0x01=0x81
B1 = 0x80 + 0x00 = 0x80
S = B3 + B2 + B1 = 0x03 + 0x81 + 0x80 = 0x104
B0 = 0x80 + Mod(S,128) = 0x84

Condition:

Make 3rd axis motor back to absolute zero position(= 0), ID = 3. Move to position 0 = 0x00, One byte data,
PacketLenght = 4.

Method:

B4 = 0x03
B3 = 0x80 +(PacketLength-4)*32+Go_Relative_PosP = 0x80+0x03 = 0xa3
B2 = 0x80 + 0x00 = 0x80
B1 = 0x80 + 0x78 = 0xf8
S = B4 + B3 + B2 + B1 = 0x03 + 0xa3 + 0x80 + 0xf8 = 0x21e
B0 = 0x80 + Mod(S , 128) = 0x80 + 0x1e = 0x9e

Condition:

Make 3rd axis motor move 120(steps) from right now position, ID = 3.

120 = 0x78 = 0x0111 1000 > 63,Two byte data, high 7bits 000 0000=0x00, lower 7bits = 111 1000 = 0x78. And
use function Go_Relative_Pos (=0x03), Packet Length = 5.

7.7 Application Examples

 54
DC2MS-14G-0920A18

■ EXAMPLE 4

■ EXAMPLE 5

■ EXAMPLE 6

Method:

-120 = 0x88 = 0xff88 < -63,Two byte data.
0xff88 = 0x1111 1111 1000 1000:
Lower 7bits = 000 1000 = 0x08 Higher 7bits = 0111 1111 = 0x7f

Use function Go_Relative_Pos(=0x03), Packet Length = 5.

B4 = 0x03;
B3 = 0x80 +(PacketLength-4)*32 + Go_Relative_Pos = 0x80 +0x04 =0xa3.
B2 = 0x80 + 0x7f = 0xff
B1 = 0x80 + 0x08 = 0x88
S = B4 + B3 + B2 + B1 = 0x03 + 0xa3 + 0xff + 0x88 = 0x22d
B0 = 0x80 + Mod(S , 128) = 0x80 + 0x2d = 0xad

Condition:

Make 3rd axis motor move -120(steps) from right now position, ID = 3.

Method:

Speed is 60, One Byte data is enough, 60 = 0x3c. Packet Length = 4.

B3 = 0x02;
B2 = 0x80 +(PacketLength-4)*32 + Turn_ConstSpeed = 0x80 + 0x0a = 0x8a
B1 = 0x80 + 0x3c = 0xbc
S = B3 + B2 + B1 = 0x02 + 0x8a + 0xbc
B0 = 0x80 + Mod(S , 128) = 0xc8

Condition:

Make 2nd axis motor turn at 60rpm, ID = 2.

Method:

B3 = 0x02;
B2 = 0x80 +(PacketLength-4)*32 + Turn_ConstSpeed = 0x80+0x40+0x0a = 0x8a
B1 = 0x80 + 0x44 = 0xc4
S = B3 + B2 + B1 = 0x02 + 0x8a + 0xc4 = 0x150
B0 = 0x80 + Mod(S , 128) = 0x80 + 0x50 = 0xd0

Condition:

Make 2nd axis motor turn at -60rpm, ID = 2. Speed is -60 = 0xc4 = 0x1100 0100 > -63, One byte data 7bits =
0x0100 0100 = 0x44. Packet Length = 4.

7.7 Application Examples

 55
DC2MS-14G-0920A18

■ EXAMPLE 7

■ EXAMPLE 8

Method:

Always use General ID = 0x7f
The Feedrate = 3, could be from 1~127
Global_Func = (char)Make_LinearLine = 0x02;

Then send four packets to the Drives as:
Send_Package(ID,X1 - X0), i.e. Send_Package(0x7f,100)
Send_Package(ID,Y1 - Y0), i.e. Send_Package(0x7f,200)
Send_Package(ID,Z1 - Z0), i.e. Send_Package(0x7f,0)
Send_Package(ID,FeedRate),i.e. Send_Package(0x7f,3)

After the X-Y-Z three Drives received all four packets, they will start to move until the meet the end point of
(X1,Y1,Z1). Three motors will meet (X1,Y1,Z1) at the same time.

During the linear or circular interpolation motion, the Read_Drive_Status (=0x09) can used to read Drives status
register to check whether b5 = 0 or not, b5 = 0 means the coordinated motion be finished.

Send_Package(ID,Y1 - Y0) is the subroutine in the SAMPLE CODE, it will generate a packet as above exam-
ples.

Condition:

Make a line on X-Y Plane
Suppose right now position for three motors are(X0,Y0,Z0) = (0,0,0),
and the End point of straight line is (X1,Y1,Z1) = (100,200,0)

Method:

The Feedrate = 1, could be from 1~127>0, because in CW direction otherwise be negative value.
The planeNumber = 0 because it is in X-Y plane
TwoBytes = (PlaneNumber<<8) | FeedRate = 0*256 + 1 = 1
Use General ID = 0x7f
Global_Func = (char)Make_CircularArc = 0x04;

Then send five packets to the Drives as:
Send_Package(ID,X0 - Xc), i.e. Send_Package(0x7f,-100)
Send_Package(ID,Y0 - Yc), i.e. Send_Package(0x7f,0)
Send_Package(ID,X1 - Xc), i.e. Send_Package(0x7f,100)
Send_Package(ID,Y1 - Yc), i.e. Send_Package(0x7f,0)
Send_Package(ID,TwoBytes),i.e. Send_Package(0x7f,1)

After the X-Y-Z three Drives received all four packets, Only two of three motors will move and finally will meet
(X1,Y1) at the same time. During the linear or circular interpolation motion, the Read_Drive_Status (=0x09)
can used to read Drives status register to check whether b5 = 0 or not, b5 = 0 means the coordinated motion
be finished.

Two equal half arcs must be made to make a circle.

Condition:

Make a circular arc on X-Y Plane

Suppose right now position for three motors are(X0,Y0) = (0,0), and the End point of arc is (X1,Y1) = (200,0) in
CW direction. It is easy to know the center of arc is (Xc,Yc) = (100,0)

7.7 Application Examples

 56
DC2MS-14G-0920A18

The following three examples make use of the sample code in Section 7.7A Appendix : C++ Code for Serial
Communication Protocol. All contents of the sample code must be copied to the program.

■ EXAMPLE 9

■ EXAMPLE 10

■ EXAMPLE 11

Condition:

Read servo motor absolute position

Method:

Call ReadMotorPosition32() subroutine function
Motor position stored in Motor_Pos32 variable as:
Motor_Pos32 = (long) [-2^27 : 2^27-1] = [-134,217,728 : 134,217,727]

Condition:

Read servo motor torque current

Method:

Call ReadMotorTorqueCurrent() subroutine function
Motor torque current stored in MotorTorqueCurrent variable as:
MotorTorqueCurrent = (short) [-2^15 : 2^15-1] = [−32,767 : 32,766]

MotorTorqueCurrent represents a relative number according to the RMS current output by servo drive. This
value is different between each servo motor capacity and varies between the DC2 and DC24 servo drive. The
customer can measure the change in MotorTorqueCurrent variable to monitor relative current draw. Use servo
motor torque constant specification to calculate torque output.

Condition:

Read servo drive Main Gain parameter

Method:

Call ReadMainGain() subroutine function
DC2 drive Main Gain stored in MainGain_Read variable

Use the same subroutine format for all Parameter Read functions 0x18~ 0x1f.

DC2MS-14G-0920A18

DC232M

Several Drives can be connected by RS485 after every Drive on the RS485 net has been designated an
individual, or broadcasting ID number.

The RS485 check box must be checked if RS485 network is used which means there are at least two or more
Drive on the net, then every servo drive status and configuration can be read or set according to the ID number
on the servo setting dialog box. The ID number cannot be assigned to a particular Drive if RS485 network is
connected.

The Servo Drive ID number CAN ONLY BE SET when there is only ONE drive connected, then assigned a
new ID number to that drive without checking the RS485/232 Net check box (in the DC2DRV software).

The RS485 network is a serial network, if there is a packet in the network, one Drive will receive it first, if the
packet’s ID number is the same as the Drives, that packet will be received and processed by the Drive, otherwise
that packet will be relayed to the next Drive.

The Drive ID is contained in the first byte of the packet. When a packet is received, the drive only reads the first
byte, it will receive if ID is correct and relay to next drive if ID does not match. Data flow on the serial RS485 net
is very fast and efficient.

Every drive has a RS485NET node which contains a RS485 buffer such as LTC491.

 59

7.8 RS485 Serial Network

DC2 DC2 DC2

C++ Code for Serial Communication - Page 1
 60

DC2MS-14G-0920A18

7.9A Appendix : C++ Code for Serial Communication Protocol

The following code shows an example to generate a data packet and call functions in RS232 serial protocol.

Note: in the description of RS232 communication protocol above (Section 7), the last byte of packet is
always B0, but in the code below, the first byte is always B0.

#define Go_Absolute_Pos 0x01
#define Is_AbsPos32 0x1b
#define General_Read 0x0e
#define Is_TrqCurrent 0x1e
#define Read_MainGain 0x18
#define Is_MainGain 0x10

char InputBuffer[256]; //Input buffer from RS232,
char OutputBuffer[256]; //Output buffer to RS232,
unsigned char InBfTopPointer,InBfBtmPointer;//input buffer pointers
unsigned char OutBfTopPointer,OutBfBtmPointer;//output buffer pointers
unsigned char Read_Package_Buffer[8],Read_Num,Read_Package_Length,Global_Func;
unsigned char MotorPosition32Ready_Flag, MotorTorqueCurrentReady_Flag, MainGainRead_Flag;
long Motor_Pos32;
int MotorTorqueCurrent, MainGain_Read;

void DlgRun::ReadPackage()
{

unsigned char c,cif;

ReadRS232Port(); // Include customer code to read from serial port

while(There is data in the customer hardware RS232 receiving Buffer)
{

InputBuffer[InBfTopPointer] = HardwaerRS232ReceiveBuffer; //Load InputBuffer with received packets
InBfTopPointer++;

}

while(InBfBtmPointer!=InBfTopPointer)
{

c = InputBuffer[Comm.InBfBtmPointer];
InBfBtmPointer++;
cif = c&0x80;
if(cif==0)
{

Read_Num = 0;
Read_Package_Length = 0;

}
if(cif==0||Read_Num>0)
{

Read_Package_Buffer[Read_Num] = c;
Read_Num++;
if(Read_Num==2)
{

cif = c>>5;
cif = cif&0x03;
Read_Package_Length = 4 + cif;
c = 0;

}
if(Read_Num==Read_Package_Length)
{

Get_Function();
Read_Num = 0;
Read_Package_Length = 0;

}
}

}
}

!

 7.9A Appendix : C++ Code for Serial Communication Protocol

C++ Code for Serial Communication - Page

DC2MS-14G-0920A18

void DlgRun::Get_Function(void)
{

char ID, ReceivedFunction_Code, CRC_Check;
ID = Read_Package_Buffer[0]&0x7f;
ReceivedFunction_Code = Read_Package_Buffer[1]&0x1f;
CRC_Check = 0;
for(int i=0;i<Comm.Read_Package_Length-1;i++)
{

CRC_Check += Read_Package_Buffer[i];
}
CRC_Check ̂ = Read_Package_Buffer[Comm.Read_Package_Length-1];
CRC_Check &= 0x7f;

if(CRC_Check!= 0){
//MessageBox(“There is CRC error!”) - Customer code to indicate CRC error

}
else
{
switch(ReceivedFunction_Code){

case Is_AbsPos32:
Motor_Pos32 = Cal_SignValue(Read_Package_Buffer);
MotorPosition32Ready_Flag = 0x00;
break;

case Is_TrqCurrent:
MotorTorqueCurrent = Cal_SignValue(Read_Package_Buffer);
MotorTorqueCurrentReady_Flag = 0x00;
break;

case Is_MainGain:
MainGain_Read = Cal_SignValue(Read_Package_Buffer);
MainGainRead_Flag = 0x00;
break;

default:;
}

}
}

/*Get data with sign - long*/
long DlgRun::Cal_SignValue(unsigned char One_Package[8])
{

char Package_Length,OneChar,i;
long Lcmd;
OneChar = One_Package[1];
OneChar = OneChar>>5;
OneChar = OneChar&0x03;
Package_Length = 4 + OneChar;
OneChar = One_Package[2]; /*First byte 0x7f, bit 6 reprents sign */
OneChar = OneChar << 1;
Lcmd = (long)OneChar; /* Sign extended to 32bits */
Lcmd = Lcmd >> 1;
for(i=3;i<Package_Length-1;i++)
{

OneChar = One_Package[i];
OneChar &= 0x7f;
Lcmd = Lcmd<<7;
Lcmd += OneChar;

}
return(Lcmd); /* Lcmd : -2^27 ~ 2^27 - 1 */

}

61

 7.9A Appendix : C++ Code for Serial Communication Protocol

C++ Code for Serial Communication - Page

DC2MS-14G-0920A18

//***************** Every Robot Instruction ******************
// Send a package with a function by Global_Func
// Displacement: -2^27 ~ 2^27 - 1
// Note: in the description of RS232 communication protocol above (Section 7), the last byte of packet is //
always B0, but in the code of below, the first byte is always B0.

void DlgRun::Send_Package(char ID , long Displacement)
{

unsigned char B[8],Package_Length,Function_Code;
long TempLong;
B[1] = B[2] = B[3] = B[4] = B[5] = (unsigned char)0x80;
B[0] = ID&0x7f;
Function_Code = Global_Func & 0x1f;
TempLong = Displacement & 0x0fffffff; //Max 28bits
B[5] += (unsigned char)TempLong&0x0000007f;
TempLong = TempLong>>7;
B[4] += (unsigned char)TempLong&0x0000007f;
TempLong = TempLong>>7;
B[3] += (unsigned char)TempLong&0x0000007f;
TempLong = TempLong>>7;
B[2] += (unsigned char)TempLong&0x0000007f;
Package_Length = 7;
TempLong = Displacement;
TempLong = TempLong >> 20;
if((TempLong == 0x00000000) || (TempLong == 0xffffffff))
{//Three byte data

B[2] = B[3];
B[3] = B[4];
B[4] = B[5];
Package_Length = 6;

}
TempLong = Displacement;
TempLong = TempLong >> 13;
if((TempLong == 0x00000000) || (TempLong == 0xffffffff))
{//Two byte data

B[2] = B[3];
B[3] = B[4];
Package_Length = 5;

}
TempLong = Displacement;
TempLong = TempLong >> 6;
if((TempLong == 0x00000000) || (TempLong == 0xffffffff))
{//One byte data

B[2] = B[3];
Package_Length = 4;

}
B[1] += (Package_Length-4)*32 + Function_Code;
Make_CRC_Send(Package_Length,B);

}

62

 7.9A Appendix : C++ Code for Serial Communication Protocol

C++ Code for Serial Communication - Page

DC2MS-14G-0920A18

void DlgRun::Make_CRC_Send(unsigned char Plength,unsigned char B[8])
{

unsigned char Error_Check = 0;
for(int i=0;i<Plength-1;i++)
{

OutputBuffer[OutBfTopPointer] = B[i];
OutBfTopPointer++;
Error_Check += B[i];

}
Error_Check = Error_Check|0x80;
OutputBuffer[OutBfTopPointer] = Error_Check;
OutBfTopPointer++;

while(OutBfBtmPointer != OutBfTopPointer)
{

RS232_HardwareShiftRegister = OutputBuffer[OutBfBtmPointer];
SendRS232Port(); // Include customer code to send to RS232 port
OutBfBtmPointer++; // Change to next byte in OutputBuffer to send

}
}

void DlgRun::ReadMotorTorqueCurrent(void)
{/*Below are the codes for reading the motor torque current */

//Read motor torque current

char ID = 0; //Suppose read 0 axis motor
Global_Func = General_Read;
Send_Package(ID , Is_TrqCurrent);

//Function code is General_Read, but one byte data is : Is_TrqCurrent
//Then the drive will return a packet, Function code is Is_TrqCurrent
//and the data is 16bits Motor torque current.

MotorTorqueCurrentReady_Flag = 0xff;
While(MotorTorqueCurrentReady_Flag != 0x00)
ReadPackage();

//MotorTorqueCurrentReady_Flag is cleared inside ReadPackage() or inside
//Get_Function() exactly after the MotorTorqueCurrent is updated.

}

63

 7.9A Appendix : C++ Code for Serial Communication Protocol

C++ Code for Serial Communication - Page

DC2MS-14G-0920A18

void DlgRun::ReadMotorPosition32(void)
{/*Below are the codes for reading the motor shaft 32bits absolute position */

//Read motor 32bits position

char ID = 0; //Suppose read 0 axis motor
Global_Func = General_Read;
Send_Package(ID , Is_AbsPos32);

// Function code is General_Read, but one byte data is : Is_AbsPos32
// Then the drive will return a packet, Function code is Is_AbsPos32
// and the data is 28bits motor position32.

MotorPosition32Ready_Flag = 0xff;
While(MotorPosition32Ready_Flag != 0x00)
ReadPackage();

// MotorPosition32Ready_Flag is cleared inside ReadPackage() or inside
// Get_Function() exactly after the Motor_Pos32 is updated.

}

void MoveMotorToAbsolutePosition32(char MotorID,long Pos32)
{

char Axis_Num = MotorID;
Global_Func = (char)Go_Absolute_Pos;
Send_Package(Axis_Num,Pos32);

}

void ReadMainGain(char MotorID)
{

char Axis_Num = MotorID;
Global_Func = (char)Read_MainGain;
Send_Package(Axis_Num, Is_MainGain);

MainGainRead_Flag = 0xff;
while(MainGainRead_Flag != 0x00)
{

ReadPackage();
}

}

64

 7.9A Appendix : C++ Code for Serial Communication Protocol

C++ Code for Serial Communication - Page

DC2MS-14G-0920A18

void main(void)
{

/* (1) Move motor 2 to absolute position of 321,456 - Method 1*/
char Axis_Num = 2;
Global_Func = (char)Go_Absolute_Pos;
long pos = 321456;
Send_Package(Axis_Num,Pos);

/* (2) Move motor 2 to absolute position of 321,456 - Method 2 - Using subroutine function*/
MoveMotorToAbsolutePosition32(2,321456);

/* (3) Code for reading the motor shaft 32bits absolute position - Method 1

This method uses a while delay to wait for Send_Package() function to complete
*/
int i;
InBfTopPointer = InBfBtmPointer = 0; //reset input buffer pointers
OutBfTopPointer = OutBfBtmPointer = 0; //reset output buffer pointers

for(i=0;i<8;i++)

Read_Package_Buffer[i] = 0;

Read_Num = Read_Package_Length = 0;

//Reading motor 32bits position
char ID = 0; //Suppose read 0 axis motor
Global_Func = General_Read;
Send_Package(ID , Is_AbsPos32);

while(i<10000) //10~20ms waiting
{

i++;
}

ReadPackage(); //Motor absolute position stored in Motor_Pos32 variable

/* (4) Reading the motor shaft 32bits absolute position - Method 2 using subroutine function*/
ReadMotorPosition32(); //Motor absolute position stored in Motor_Pos32 variable

/* (5) Reading the motor current using subroutine function*/
ReadMotorTorqueCurrent(); //Motor torque current stored in MotorTorqueCurrent variable

/* (6) Reading the main gain of 8th axis servo drive using subroutine function*/
ReadMainGain(8); //Main Gain stored in MainGain_Read variable

}

65

 7.9A Appendix : C++ Code for Serial Communication Protocol

C++ Code for Serial Communication - Page

DC2MS-14G-0920A18

Sample Code Notes:

(1) The sample code uses a ring buffer structure to input and output data packet bytes. Two separate ring buffers are
using in the code as char InputBuffer[256] and char OutputBuffer[256].

Two position pointers are used in each buffer structure to index the data inside the buffer structure. For example, when
a data packet is received from the servo drive, each byte received is sequentially saved into the InputBuffer with the
InBfTopPointer incremented each time. This is done until the host hardware RS232 receiver buffer is empty, meaning
all packet bytes have been read and stored. Data is processed as first-in-first-out (FIFO) queue and starts at the index
of InBfBtmPointer. InBfBtmPointer is incremented each time a byte is processed until InBfBtmPointer=InBfTopPointer,
meaning all packet bytes have been processed.

66

8 Modbus RTU (RS485) Communication

 67
DC2MS-14G-0920A18

The DC2-B6S-00 servo drive models are compatible with Modbus RTU communication over 2-Wire RS485. Please

contact Modusystems for Modbus communication specification.

9 CAN Communication

 68
DC2MS-14G-0920A18

The DC2-□□B6S-00 servo drive models are compatible with CAN 2.0A specification. The data frame format is a
proprietary DC2 servo drive format with efficient data packaging and high transmission rates up to 1Mbit/s for
fastest cycle time.

Please refer to the CAN communication manual for detailed specificaitons.

DC2 servo drive CAN Protocol Data Framing:

15-bit CRC
7-bit

End of frame IFS

11-bit Identifier Data
Length

Data
(1~4 Bytes)

11-bit Identifier Consists both Drive ID and Command Function Code:

b4~b0 =

b5~b10 =

5-bit Function Code

Drive ID 0~64
0 = Broadcast

Function Code:

CAN Command 5-bit Function Code Data Length (Bytes)
0 Set_Origin 0x00 0
1 Go_Absolute_Pos_PTP 0x01 1~4
2 Make_LinearLine 0x02 1~4
3 Go_Relative_Pos_PTP 0x03 1~4
...

1 0 1 1 1 1 1 1 1 1 1 1 1

0

0

0

0

St
ar

t o
f f

ra
m

e

RT
R

ID
E

R
es

er
ve

d

C
R

C

de
lim

ite
r

AC
K

sl
ot

APPENDIX A - SERVO DRIVE DIMENSIONS

 69
DC2MS-14G-0920A18

10

(Name Plate 1)

(Name Plate 2)

2

♦ Exterior Dimensions

20 75

JP1
JP5
JP3

70

JP2
JP4

Chassis Ground
Terminal

♦ Mounting (as viewed from rear)

3 x 3 Mount 32

2 4

2.
5 2.
5

3

85

31

█ Position Servo Mode - Ball Screw

1. Connect encoder feedback and motor power cable from servo drive to servo motor.
2. Connect RS232 tuning cable from servo drive JP2 to controller PC.
3. Power ON servo drive.
4. Open Windows Device Manager - Locate COM Port Number of RS232 tuning cable.

5. Open DC2DRV program.
6. Select COMSET --> COM PORT. Press “Change Port“ until RS232 tuning cable COM

port number selected. Press “ok“.
7. Select ServoSetting --> DC2-DRIVER. Setting drive parameters and mode main screen

will open.
8. Press “Read” to read out the factory default or current setting of the servo drive. At any

time, pressing “Save All“ will save the parameters into the servo drive.
9. Under Servo Mode, select “Position Servo”.

10. Under command input mode, select “Pulse/Dir”,

“A/B Phase”, or “CW/CCW”.

11. Set GEAR_NUM parameter according to

ball screw pitch and target travel speed.
Example:

Ball screw pitch = 10mm
Reduction = 2:1
Target Speed = 15m/min
Rated Motor Speed = 3,000rpm = 50rev/s
Controller Pulse Output Frequency = 100kHz = 100,000pulse/s

3,000rpm / 2 = 1,500rpm after reduction
1,500rpm * 10mm = 15,000mm/min = 15m/min

100,000pulse/s / 50rev/s = 2,000pulse/rev
2,000pulse/rev / 4 = 500
GEAR_NUM = 500

12. Tune Gain and OnPosition Range according to machine and operation requirements.
13. Click “Save All“ when finished adjustments.

14. The servo drive is ready to accept position pulse commands

	A.2 Name Plate
	1 GENERAL SPECIFICATION
	1.1 Drive Overall Specification
	1.3 Encoder Specification
	2.1 ​DC2 Servo Drive Body Layout
	■ Pin Layout

	2.2 ​Connector and Signal Specification
	2.3 ​JP3 Main I/O Details
	■ Terminal Layout

	2.4 JP3 I/O Connection Circuit
	■ Type [A] Connection Circuit - General Input Circuit
	■ Type [B] Connection Circuit - General Output Circuit
	■ Type [C] Connection Circuit - Position Reference Pulse Input
	■ Type [D] Connection Circuit - Analog Command Reference Input

	2.5 Main Power Supply Requirements
	■ Single Axis
	■ Multi-Axis (Common DC Bus)
	JP1
	JP1
	JP1
	■ Regenerative Circuit

	3 START UP
	3.1 ​Mounting and Installation
	3.2 Timing Chart
	■ Power ON Timing
	■ Servo Disable / Enable Timing

	3.3 ​DC2DRV Software Communication
	■ Version 1.0
	■ Version 328.1

	4 OPERATION
	4.1 ​Position Servo Mode
	█ Reference Pulse Format
	♦ Pulse + Direction
	█ Servo In Position Output Specifications (ONPOS)
	█ Servo Position Error Accumulation

	4.2 ​Speed Servo Mode
	█ Control Reference
	█ Acceleration / Deceleration Soft Start
	█ Torque Filter Constant
	█ Control Reference - [1] Capacity Model: DC2-T1
	█ Control Reference - [L] Capacity Model: DC2-TL

	4.5 Absolute Zero Position Index Output (ZRI)
	ZRI
	JP3 Pin.10
	0

	5.1 ​Parameters Outline
	♦ Gain Tuning Procedure Flow
	█ Sample Load Type Tunings
	♦ Direct Mechanical Drive (Rigid systems, Robots)
	♦ Belt Drive / Pulley

	6 MAINTENANCE
	6.1 ​ Alarm Specifications
	♦ Internal Driver Status Readout
	♦ Alarm Motor Stop
	♦ Alarm Reset

	6.2 ​- Drive Maintenance
	♦ Regular Inspection

	7 RS232 Communication Protocol
	█ Connector Specifications
	7.1 Interface and Format
	█ Transmission
	█ Reception
	Packet = Bn Bn-1 Bn-2 B1 B0

	█ Drive Status
	█ Drive Configuration
	7.4.1 Point to Point Movement (S-Curve)
	GEAR NUMBER
	Maximum Motor Speed [rpm] =

	7.4 Common Function Details
	█ Efficiency

	7.5 DC2amic Target Position Update (DTPU)
	█ Curved Acceleration
	█ Safety
	The Servo Drive ID number CAN ONLY BE SET when there is only ONE drive connected, then assigned a new ID number to that drive without checking the RS485/232 Net check box (in the DC2DRV software).

	7.9A Appendix : C++ Code for Serial Communication Protocol
	♦ Exterior Dimensions
	♦ Mounting (as viewed from rear)
	█ Position Servo Mode - Ball Screw

